Estimação e predição nos modelos mistos não balanceados

Detalhes bibliográficos
Ano de defesa: 1992
Autor(a) principal: Lopez Perez, Luis Alberto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/11/11134/tde-20191220-120505/
Resumo: Este trabalho apresenta um estudo sobre as funções e preditores lineares nos modelos de efeitos mistos, com estrutura de dados balanceados e desbalanceados. Propõe-se um método alternativo para a estimação dos preditores lineares, baseado nos multiplicadores de Lagrange os quais dependem linearmente da estimação dos efeitos fixos e aleatórios do modelo. A estimação desses efeitos dependem da estrutura da matriz associada de variâncias e covariâncias, por isto apresenta-se uma metodologia visando simplificar sua construção, assim como o cálculo de, sua inversa. Para a estimação dos componentes da variância, o modelo é escrito em termos das decomposições ortogonais lineares, através das quais se estabelece uma relação entre os sub-índices associados aos efeitos do modelo e os produtos de Kronecker das matrizes identidades de ordem s (Is) e, quadradas de elementos unitários de ordem s (Js), com a qual o cálculo dos estimadores de máxima verossimilhança dos componentes de variância associados fica sensivelmente simplificado.