Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Manchego, Fernando Emilio Alva |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-14032013-150816/
|
Resumo: |
A anotac~ao de papeis sem^anticos (APS) e uma tarefa do processamento de lngua natural (PLN) que permite analisar parte do signicado das sentencas atraves da detecc~ao dos participantes dos eventos (e dos eventos em si) que est~ao sendo descritos nelas, o que e essencial para que os computadores possam usar efetivamente a informac~ao codicada no texto. A maior parte das pesquisas desenvolvidas em APS tem sido feita para textos em ingl^es, considerando as particularidades gramaticais e sem^anticas dessa lngua, o que impede que essas ferramentas e resultados sejam diretamente transportaveis para outras lnguas como o portugu^es. A maioria dos sistemas de APS atuais emprega metodos de aprendizado de maquina supervisionado e, portanto, precisa de um corpus grande de senten cas anotadas com papeis sem^anticos para aprender corretamente a tarefa. No caso do portugu^es do Brasil, um recurso lexical que prov^e este tipo de informac~ao foi recentemente disponibilizado: o PropBank.Br. Contudo, em comparac~ao com os corpora para outras lnguas como o ingl^es, o corpus fornecido por este projeto e pequeno e, portanto, n~ao permitiria que um classicador treinado supervisionadamente realizasse a tarefa de anotac~ao com alto desempenho. Para tratar esta diculdade, neste trabalho emprega-se uma abordagem semissupervisionada capaz de extrair informac~ao relevante tanto dos dados anotados disponveis como de dados n~ao anotados, tornando-a menos dependente do corpus de treinamento. Implementa-se o algoritmo self-training com modelos de regress~ ao logstica (ou maxima entropia) como classicador base, para anotar o corpus Bosque (a sec~ao correspondente ao CETENFolha) da Floresta Sinta(c)tica com as etiquetas do PropBank.Br. Ao algoritmo original se incorpora balanceamento e medidas de similaridade entre os argumentos de um verbo especco para melhorar o desempenho na tarefa de classicac~ao de argumentos. Usando um benchmark de avaliac~ao implementado neste trabalho, a abordagem semissupervisonada proposta obteve um desempenho estatisticamente comparavel ao de um classicador treinado supervisionadamente com uma maior quantidade de dados anotados (80,5 vs. 82,3 de \'F IND. 1\', p > 0, 01) |