[pt] ANOTADOR DE PAPEIS SEMÂNTICOS PARA PORTUGUÊS
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30371&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30371&idi=2 http://doi.org/10.17771/PUCRio.acad.30371 |
Resumo: | [pt] A anotação de papeis semânticos (APS) é uma importante tarefa do processamento de linguagem natural (PLN), que possibilita estabelecer uma relação de significado entre os eventos descritos em uma sentença e seus participantes. Dessa forma, tem o potencial de melhorar o desempenho de inúmeros outros sistemas, tais como: tradução automática, correção ortográfica, extração e recuperação de informações e sistemas de perguntas e respostas, uma vez que reduz as ambiguidades existentes no texto de entrada. A grande maioria dos sistemas de APS publicados no mundo realiza a tarefa empregando técnicas de aprendizado supervisionado e, para obter melhores resultados, usam corpora manualmente revisados de tamanho considerável. No caso do Brasil, o recurso lexical que possui anotações semânticas (Propbank.br) é muito menor. Por isso, nos últimos anos, foram feitas tentativas de melhorar esse resultado utilizando técnicas de aprendizado semisupervisionado ou não-supervisionado. Embora esses trabalhos tenham contribuido direta e indiretamente para a área de PLN, não foram capazes de superar o desempenho dos sistemas puramente supervisionados. Este trabalho apresenta uma abordagem ao problema de anotação de papéis semânticos no idioma português. Utilizamos aprendizado supervisionado sobre um conjunto de 114 atributos categóricos e empregando duas técnicas de regularização de domínio, combinadas para reduzir o número de atributos binários em 96 por cento. O modelo gerado usa uma support vector machine com solver L2-loss dual support vector classification e é testado na base PropBank.br, apresentando desempenho ligeiramente superior ao estado-da-arte. O sistema é avaliado empiricamente pelo script oficial da CoNLL 2005 Shared Task, obtendo 82,17 por cento de precisão, 82,88 por cento de cobertura e 82,52 por cento de F1 ao passo que o estado-da-arte anterior atinge 83,0 por cento de precisão, 81,7 por cento de cobertura e 82,3 por cento de F1. |