Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Fonseca, Erick Rocha |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-26062013-143120/
|
Resumo: |
A anotação de papéis semânticos (APS) é uma subárea do Processamento de Línguas Naturais (PLN) que começou a ser explorada para a língua inglesa a partir de 2002. Seu objetivo é detectar estruturas de predicador e argumentos em sentenças escritas, que correspondem a descrições de eventos (normalmente feitas por verbos); seus participantes, como agente e paciente; e circunstâncias, como tempo, local, etc. Diversas aplicações de PLN, como tradução automática e recuperação de informação, têm obtido melhorias em seu desempenho ao empregar a APS como uma etapa de pré-processamento. Para a língua portuguesa, os avanços na pesquisa de APS são ainda muito incipientes. Dado que a grande maioria dos trabalhos encontrados na literatura desta área emprega aprendizado de máquina supervisionado, um fator limitante tem sido a ausência de dados rotulados em português, problema que apenas recentemente foi parcialmente resolvido com a criação do PropBank-Br. Este recurso segue o modelo de anotação usado no Prop- Bank, o principal conjunto de dados rotulados empregado na tarefa de APS para a língua inglesa. Ainda assim, o PropBank-Br contém menos de um décimo do total de instâncias de dados presentes no PropBank original. Outro ponto a ser observado é que a abordagem mais comum para a APS baseia-se na extração de uma grande quantidade de informação linguística das sentenças de entrada para ser usada por classificadores automáticos. Tal abordagem mostra-se extremamente dependente de outras ferramentas de PLN, característica particularmente indesejável no caso da língua portuguesa, que não possui muitos recursos livremente disponíveis. Em contrapartida, uma outra abordagem bem sucedida encontrada na literatura abre mão do uso de conhecimento linguístico explícito e associa palavras a sequências numéricas, cujos valores são ajustados durante o treinamento de uma rede neural artificial. Estas sequências são então empregadas pela rede para realizar a APS, e podem servir também para outras tarefas de PLN. O presente trabalho seguiu o segundo método descrito acima. Foram implementadas alterações nesse método que permitiram um ganho de desempenho em comparação com sua versão original quando testada no PropBank-Br. A versão final do sistema desenvolvido está pronta para uso e poderá auxiliar pesquisas de PLN em português |