Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Ramos, João Gabriel Rosa |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/5/5169/tde-02082018-090906/
|
Resumo: |
Introdução: Triagem para admissão em unidades de terapia intensiva (UTIs) é realizada rotineiramente e é comumente baseada somente no julgamento clínico, o que pode mascarar vieses e preconceitos. Neste estudo, foram avaliadas a reprodutibilidade e validade de um algoritmo de apoio a decisões de triagem em UTI. Também foi avaliado o efeito da implementação de um instrumento de auxílio à tomada de decisão para a priorização de vagas de UTI nas decisões de admissão em UTI. Foi avaliada, ainda, a acurácia da predição prognóstica dos médicos na população de pacientes em deterioração clínica aguda. Métodos: Para o primeiro objetivo do estudo, um algoritmo computadorizado para auxiliar as decisões de priorização de vagas em UTI foi desenvolvido para classificar pacientes nas categorias do sistema de priorização da \"Society of Critical Care Medicine (SCCM)\". Nove médicos experientes (experts) avaliaram quarenta vinhetas clínicas baseadas em pacientes reais. A referência foi definida como as prioridades classificadas por dois investigadores com acesso ao prontuário completo dos pacientes. As concordâncias entre as prioridades do algoritmo com as prioridades da referência e com as prioridades dos experts foram avaliadas. As correlações entre a prioridade do algoritmo e o julgamento clínico de adequação da admissão na UTI em contexto com e sem escassez de vagas também foram avaliadas. A validade foi ainda avaliada através da aplicação do algoritmo, retrospectivamente em uma coorte de 603 pacientes com solicitação de vagas de UTI, para correlação com desfechos clínicos. Para o segundo objetivo do estudo, um estudo prospectivo, quaseexperimental foi conduzido, antes (maio/2014 a novembro/2014, fase 1) e após (novembro/2014 a maio/2015, fase 2) a implementação de um instrumento de auxílio à tomada de decisão, que foi baseado no algoritmo descrito acima. Foi avaliado o impacto da implementação do instrumento de auxílio à tomada de decisão na ocorrência de admissões potencialmente inapropriadas na UTI em uma coorte de pacientes com solicitações urgentes de vaga de UTI. O desfecho primário foi a proporção de solicitações de vaga potencialmente inapropriadas que foram admitidas na UTI em até 48 horas após a solicitação. Solicitações de vaga potencialmente inapropriadas foram definidas como pacientes prioridade 4B, conforme diretrizes da SCCM de 1999, ou prioridade 5, conforme diretrizes da SCCM de 2016. Foram realizadas análises multivariadas com teste de interação entre fase e prioridades para avaliação dos efeitos diferenciados em cada estrato de prioridade. Para o terceiro objetivo do estudo, a predição prognóstica realizada pelo médico solicitante foi registrada no momento da solicitação de vaga de UTI. Resultados: No primeiro objetivo do estudo, a concordância entre as prioridades do algoritmo e as prioridades da referência foi substancial, com uma mediana de kappa de 0,72 (IQR 0,52-0,77). As prioridades do algoritmo evidenciaram uma maior reprodutibilidade entre os pares [kappa = 0,61 (IC95% 0,57-0,65) e mediana de percentagem de concordância = 0,64 (IQR 0,59-0,70)], quando comparada à reprodutibilidade entre os pares das prioridades dos experts [kappa = 0,51 (IC95% 0,47-0,55) e mediana de percentagem de concordância = 0,49 (IQR 0,44-0,56)], p=0,001. As prioridades do algoritmo também foram associadas ao julgamento clínico de adequação da admissão na UTI (vinhetas com prioridades 1, 2, 3 e 4 seriam admitidas no último leito de UTI em 83,7%, 61,2%, 45,2% e 16,8% dos cenários, respectivamente, p < 0,001) e com desfechos clínicos reais na coorte retrospectiva, como admissão na UTI, consultas com equipe de cuidados paliativos e mortalidade hospitalar. No segundo objetivo do estudo, 2374 solicitações urgentes de vaga de UTI foram avaliadas, das quais 1184 (53,8%) pacientes foram admitidos na UTI. A implementação do instrumento de auxílio à tomada de decisão foi associada com uma redução de admissões potencialmente inapropriadas na UTI, tanto utilizando a classificação de 1999 [adjOR (IC95%) = 0,36 (0,13-0,97), p = 0,043], quanto utilizando a classificação de 2016 [adjOR (IC95%) = 0,35 (0,13-0,96, p = 0,041)]. Não houve diferença em mortalidade entre as fases 1 e 2 do estudo. No terceiro objetivo do estudo, a predição prognóstica do médico solicitante foi associada com mortalidade. Ocorreram 593 (34,4%), 215 (66,4%) e 51 (94,4%) óbitos nos grupos com prognóstico de sobrevivência sem sequelas graves, sobrevivência com sequelas graves e nãosobrevivência, respectivamente (p < 0,001). Sensibilidade foi 31%, especificidade foi 91% e a área sob a curva ROC foi de 0,61 para predição de mortalidade hospitalar. Após análise multivariada, a gravidade da doença aguda, funcionalidade prévia e admissão na UTI foram associadas com uma maior chance de erro prognóstico, enquanto que uma predição de pior prognóstico foi associada a uma menor chance de erro prognóstico. O grau de expertise do médico solicitante não teve efeito na predição prognóstica. Discussão/Conclusão: Neste estudo, um algoritmo de apoio a decisões de triagem em UTI demonstrou boa reprodutibilidade e validade. Além disso, a implementação de um instrumento de auxílio à tomada de decisões para priorização de vagas de UTI foi associada a uma redução de admissões potencialmente inapropriadas na UTI. Também foi encontrado que a predição prognóstica dos médicos solicitantes foi associada a mortalidade hospitalar, porém a acurácia foi pobre, principalmente devido a uma baixa sensibilidade para detectar risco de morte |