Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Mielke, Lucas Valle |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55137/tde-13052024-163432/
|
Resumo: |
O arroz é um cereal essencial consumido por cerca de 2,5 bilhões de pessoas no mundo, e o Brasil se destaca entre os dez maiores produtores. A produção brasileira é reconhecida por sua produtividade, tecnologia e fiscalização, se concentrando no Rio Grande do Sul que contribui com cerca de 70% da produção total. Assim como qualquer commodity agrícola, o preço do arroz está sujeito às leis de mercado, sendo afetado por diversos fatores, como condições climáticas e preços dos insumos, além da demanda, refletida pelo poder de compra da população. Essa oscilação dos preços pode ser prejudicial tanto para os consumidores quanto produtores, especialmente considerando o tempo de 5 meses entre o plantio e a colheita. Diante dessas questões, o objetivo principal deste trabalho é desenvolver modelos de aprendizagem de máquina capazes de prever o preço dessa commodity, considerando um horizonte de 5 meses e utilizando variáveis representativas da oferta e da demanda. Embora existam pesquisas que buscam prever o preço do arroz e de outras commodities agrícolas utilizando diferentes modelos de aprendizagem de máquina, não foram encontrados estudos abordando especificamente a previsão com a mesma antecedência deste trabalho, nem utilizando variáveis representativas da oferta e da demanda. Portanto, este projeto preenche essa lacuna. Para a realização desta pesquisa, foram adotados diversos modelos de aprendizagem de máquina que foram aplicados com e sem a técnica de Eliminação Recursiva de Variáveis (RFE), utilizando subconjuntos de dados de treinamento e teste com diferentes períodos. Além disso, dois procedimentos de ajuste na base de dados foram realizados para prever com 5 meses de antecedência: um por meio de defasagem direta e outro utilizando variáveis independentes simuladas, como explicado no capítulo de Materiais e Métodos. Os resultados revelaram que foi possível desenvolver tais modelos, os quais apresentaram uma média de erro de aproximadamente 17%, notando-se erro mais elevado em períodos específicos, especialmente na segunda metade de 2020. O modelo de melhor desempenho na previsão com 5 meses de antecedência foi o Extreme Gradient Boosting com a técnica RFE no procedimento de defasagem direta, alcançando um MAPE de 10%. |