Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Sousa, Alexandre do Nascimento Oliveira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-01042022-113035/
|
Resumo: |
In this thesis, we study hyperbolicity for deterministic and random nonautonomous dynamical systems and their applications to differential equations. More precisely, we present results for the following topics: nonuniform hyperbolicity for evolution processes and hyperbolicity for nonautonomous random dynamical systems. Concerning the first one, we study the robustness of the nonuniform exponential dichotomy for continuous and discrete evolution processes. We present an example of an infinite-dimensional differential equation that admits a nonuniform exponential dichotomy and apply the robustness result. Moreover, we study the persistence of nonuniform hyperbolic solutions in semilinear differential equations. Furthermore, we introduce a new concept of nonuniform exponential dichotomy, provide examples, and prove a stability result under perturbations for it. For the second topic, we introduce exponential dichotomies for random and nonautonomous dynamical systems. We prove a robustness result for this notion of hyperbolicity and study its applications to random and nonautonomous differential equations. Among these applications, we study the existence and continuity of random hyperbolic solutions and their associated unstable manifolds. As a consequence, we obtain continuity and topological structural stability for nonautonomous random attractors. |