Regressão spline de nós livres para modelagem de curvas de crescimento multifásica

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Soares, Alex Rocha
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-07052019-160531/
Resumo: Neste trabalho, apresentamos os modelos de regressão spline de nós-livres como uma alternativa aos modelos não lineares utilizados em curvas de crescimento multifásico. Estudaremos o algoritmo de busca cega a través da seção dourada para escolher a melhor quantidade de nós e suas respectivas localidades. O pacote freeknotspline do software livre R foi utilizado para ajustar os modelos propostos. O critério de informação de Akaike foi usado para escolher o melhor modelo para diferentes graus do polinômio associados ao spline. Estudos de simulação foram realizados para entender melhor a posição dos nós, localidade e grau do polinômio relacionado aos modelos de regressão spline de nós-livres e como isto pode afetar a qualidade de ajuste do modelo. Com base no nosso estudo de simulação, propomos uma forma empírica de determinar o numero de nós, deixando que o algoritmo de busca escolha a posição dos nós. A metodologia é aplicada aos dados de crescimento multifásico de vacas da raça Hereford.