Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Soares, Alex Rocha |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-07052019-160531/
|
Resumo: |
Neste trabalho, apresentamos os modelos de regressão spline de nós-livres como uma alternativa aos modelos não lineares utilizados em curvas de crescimento multifásico. Estudaremos o algoritmo de busca cega a través da seção dourada para escolher a melhor quantidade de nós e suas respectivas localidades. O pacote freeknotspline do software livre R foi utilizado para ajustar os modelos propostos. O critério de informação de Akaike foi usado para escolher o melhor modelo para diferentes graus do polinômio associados ao spline. Estudos de simulação foram realizados para entender melhor a posição dos nós, localidade e grau do polinômio relacionado aos modelos de regressão spline de nós-livres e como isto pode afetar a qualidade de ajuste do modelo. Com base no nosso estudo de simulação, propomos uma forma empírica de determinar o numero de nós, deixando que o algoritmo de busca escolha a posição dos nós. A metodologia é aplicada aos dados de crescimento multifásico de vacas da raça Hereford. |