Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Medeiros, Everton Santos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-31102014-120720/
|
Resumo: |
Os principais resultados originais relatados ao longo desse texto provêm de observações em experimentos numéricos, entretanto, na maioria dos casos, os resultados são fundamentados com instrumentos teóricos ou com modelos heurísticos. Inicialmente, introduzimos, nas equações que descrevem osciladores caóticos, uma pequena perturbação periódica a fim de observar no espaço de parâmetros a porção de parâmetros cujo comportamento caótico é extinto. Assim, constatamos que o conjunto de parâmetros correspondentes às orbitas caóticas extintas correspondem à replicas de janelas periódicas complexas previamente existentes no sistema não-perturbado. Posteriormente, utilizando as propriedades de torsão do espaço de estados dos osciladores caóticos, visualizamos transições existentes no interior das janelas periódicas complexas. Quando consideramos sequências dessas janelas sob a ótica da torsão do espaço de estados, observamos a existência de regras que relacionam janelas consecutivas ao longo dessa sequência. Adicionalmente, no espaço de parâmetros de osciladores caóticos e sistemas dinâmicos adicionais, fizemos uma estimativa da dimensão da fronteira entre o conjunto de parâmetros que leva às soluções periódicas e o conjunto que leva aos atratores caóticos. Para os sistemas investigados, os valores obtidos para essa dimensão estão no mesmo intervalo de confiança, indicando que essa dimensão é universal. |