Reconhecimento de padrões utilizando um anel de osciladores de fase

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Silva, Fabio Alessandro Oliveira da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-03022017-110130/
Resumo: Redes neurais caracterizadas por cadeias de osciladores acoplados são um dentre vários tipos de redes que possuem propriedades peculiares relacionadas com a sua estrutura topológica. A dinâmica que descreve o comportamento dessas redes é modelada por sistemas de equações diferenciais, nos quais cada neurônio (nó) é considerado como um oscilador. Estudos realizados em redes desse tipo, em tarefas de reconhecimento de padrões estáveis gerados aleatoriamente, têm apresentado resultados computacionais satisfatórios. Esta tese propôs um desenvolvimento teórico e computacional que forneceu um algoritmo, para o estudo do desempenho de redes neurais em forma de osciladores de Ciclo-Limite de Stuart-Landau, no reconhecimento de figuras fractais. Neste trabalho apresentaremos contextos reais em que podemos encontrar características deste tipo de redes e motivações. Em seguida, serão expostos conceitos de redes de Hopfield, reconhecimento de padrões, teorias dos fractais e dos osciladores de Ciclo-Limite de Stuart-Landau; tais conceitos, por sua vez, serviram como ferramentas principais para o algoritmo construído que será explicado posteriormente. Antes de apresentá-lo, será exposta a maneira como a dinâmica desses osciladores pode se tornar caótica, por meio de simulações computacionais alterando numericamente variáveis intrínsecas, como tempos de disparos entre neurônios, ou quantidades destes no sistema. Estas descobertas serviram como confirmações para elaborar e compor do algoritmo, bem como orientaram as simulações de reconhecimento de figuras fractais. Por fim, será apresentada a conclusão dos resultados encontrados.