Exportação concluída — 

Desenvolvimento de ferramenta computacional de alta ordem para a solução de problemas de propagação acústica.

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Maciel, Saulo Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3150/tde-26062014-110754/
Resumo: O desenvolvimento de uma ferramenta de Dinâmica de Fluidos Computacional que utiliza Método de Elementos Finitos baseada na discretização de Galerkin descontínuo é apresentado neste trabalho com objetivo de resolver a equação de Euler linearizada para escoamento compressível em duas dimensões usando malhas estruturadas e não estruturadas. Procuramos utilizar esta ferramenta como um propagador de ondas sonoras para estudar fenômenos aeroacústicos. O problema de Riemann presente no fluxo convectivo da equação de Euler é tratado com um método upwind HLL e para o avanço da solução no tempo é usado o método de Runge-Kutta explícito de 4 estágios com segunda ordem de precisão. A eficiência computacional, a convergência do método e a precisão são testadas através de simulações de escoamentos já apresentadas na literatura. A taxa de convergência para altas ordens de aproximação é assintótica que é um resultado compatível com a formulação Galerkin descontínuo.