Uma formulação Petrov-Galerkin descontínuo para solução da equação de Helmholtz com minimização do erro de fase

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Dias, Rodrigo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Civil
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/13684
Resumo: Pollution error is a well known source of inaccuracies in continuous or discontinuous FE approaches to solve the Helmholtz equation. This topic is exaustivelly studied in a large number of papers as well as IHLENBURG e BABUSKA [1], IH- ˇ LENBURG [2] and others references inside there in and others references. Robust methodologies for structured square meshes have been developed in recent years. This work seeks to develop a methodology based on Discontinuous PetrovGalerkin formulation (DPG), in order to minimize phase error for structured or unstructured meshes applied for Helmholtz equation in homogeneous media. A Petrov–Galerkin FE formulation is introduced for Helmholtz problem in two dimensions using polynomial weighting functions. At each node of the triangular mesh, a global basis function for the weighting space is obtained, adding to the bilinear C 0 Lagrangian weighting function linear combinations. The optimal weighting functions, with the same support of the corresponding global test functions, are obtained after computing the coefficients α n m of these linear combinations attending to optimal criteria. This is done numerically through a preprocessing technique that is naturally applied to nonuniform and unstructured meshes. In particular, for uniform mesh a quasi optimal interior stencil of the same order of the quasi-stabilized finite element method stencil derived by BABUSKA ˇ et al. [3] is obtained. Numerical results are presented illustrating the great stability and accuracy of this formulation with nonuniform and unstructured meshes.