Topology optimization method applied to design channels considering non-newtonian fluid flow.

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Kian, Jacqueline de Miranda
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3152/tde-05012018-084558/
Resumo: The study of non-Newtonian flow is presents itself as relevant in bioengineering field, specially for design of devices that conduct blood, as arterial bypass grafts. Improvements in reducing energy dissipation and blood cell damage caused by artificial flows can be achieved by using numerical simulation and optimization methods. Thus, the present work proposes the study of design channels for steady, incompressible non-Newtonian flow, by using Topology Optimization Method based on the density method. The fluid flow is modeled with the Navier-Stokes equations coupled with Carreau-Yasuda constitutive equation for the dynamic viscosity to take into account the effects of the non-Newtonian blood properties. The Topology Optimization Method distributes regions of solid and fluid, given a volume constraint, within a specified domain in order to obtain a geometry and layout that minimizes energy dissipation, shear stress and vorticity by using the material pseudo-density as design variable. To apply this method to fluidic systems design, a fictional porous media based on Darcy equation is introduced. The flow model is implemented in its discrete form by using the Finite Element Method through the OpenSource platform FEniCS, applied to automate the solution of mathematical models based on differential equations. The optimization problem is solved by using the library DOLFIN-adjoint and IPOpt optimizer. Optimized topologies of channels for blood flow, focusing in arterial bypass grafts, are presented to illustrate the proposed method.