Soluções analíticas e numéricas para escoamentos incompressíveis Newtonianos e não-Newtonianos

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Corrêa, Isabella Lopes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/237341
Resumo: O presente trabalho apresenta um estudo acerca das soluções analíticas e numéricas para algumas classes de escoamentos incompressíveis, isotérmicos e laminares de fluidos Newtonianos no estado estacionário ou transiente. As soluções analíticas para os escoamentos estacionários de fluidos não-Newtonianos também serão obtidas, utilizando o modelo Lei das Potências. Em consequência da dificuldade em se obter soluções analíticas de um sistema de Equações Diferenciais Parciais, os escoamentos apresentados neste trabalho pertencem a classe de escoamentos unidirecionais e retilíneos. Desta forma, o problema analítico é reduzido a duas variáveis primitivas desconhecidas: a componente não-nula da velocidade e a pressão, assim, uma simples integração ou técnicas consolidadas da matemática, como Soluções por Similaridade e Separação de Variáveis, serão aplicadas para obtenção das soluções analíticas. As soluções numéricas vêm para ampliar os estudos na área, trazendo a possibilidade de resolver as equações que modelam outras classes de escoamentos. O método empregado para obtenção das soluções numéricas, será o Método da Projeção, que consiste em desacoplar as variáveis velocidade e pressão das equações de Navier-Stokes. As equações resultantes deste desacoplamento serão aproximadas pela técnica de Diferenças Finitas sobre uma malha deslocada. As soluções analíticas obtidas serão de grande valia no processo de verificação da metodologia numérica, implementada em Python.