Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Oliveira, Mauri Aparecido de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/12/12139/tde-31012008-112504/
|
Resumo: |
Diversas metodologias são empregadas para realizar a análise de séries temporais, dentre as quais destaca-se o uso das redes neurais artificiais (RNA). Neste trabalho são utilizados quatro métodos para realizar previsão de séries temporais univariadas: os modelos ARIMAGARCH, RNA feedforward, RNA treinada com filtro de Kalman estendido (EKF) e RNA treinada com o filtro de Kalman unscented (UKF). Sendo que o uso de RNA-UKF é um avanço recente na área de sistemas de inteligência computacional. O uso de redes neurais treinadas com filtro de Kalman é uma metodologia que tem trazido bons resultados em uma ampla variedade de aplicações nas áreas comercial, militar e científica. Em 2002 aproximadamente 250 bilhões de dólares eram gerenciados em fundos de investimentos por modelos quantitativos (tais como lógica fuzzy, redes neurais, algoritmos genéticos, fractais e modelos de Markov). Desde 2006 estima-se que três em cada dez destes fundos utilizem estes modelos quantitativos. A capacidade das RNA em lidar com não linearidades é uma vantagem normalmente destacada quando são realizadas previsões de séries temporais. São apresentadas simulações de Monte Carlo que mostram a influência dos parâmetros dos modelos ARIMA-GARCH na predição de redes neurais artificiais do tipo feedforward, treinadas com o algoritmo de Levenberg-Marquardt. Pelos resultados obtidos verificou-se que a RNA feedforward realizou melhores previsões a medida que o parâmetro ligado a estacionariedade aumenta. Também é aplicada a teoria para construção de intervalos de predição (IP) e de confiança (IC) para RNA feedforward. As séries temporais analisadas são univariadas e compostas de dados reais do setor financeiro (Bradesco PN, Bradespar PN, Itausa PN e Itaú PN), setor de alimentos (Perdigão PN, Sadia PN, Saca da Soja de 60Kg e Saca de Açúcar de 50Kg), setor industrial (Marcopolo PN, Petrobrás PN, Embraer ON, Ripasa PN, Souza Cruz ON e Gerdau PN) e setor de serviços (Pão de Açúcar PN, Eletropaulo PNA, Eletrobras PNB, Brasil Telecom PN, Cesp PNA e Lojas Americanas PNA). Os resultados obtidos mostram que a RNA-UKF apresentou-se superior quando comparada com as técnicas concorrentes. |