Previsão de sucessões cronológicas econômico-financeiras por meio de redes neurais artificiais recorrentes de tempo real e de processos ARMA-GARCH: um estudo comparativo quanto à eficiência de previsão

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Oliveira, Mauri Aparecido de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/12/12139/tde-07122021-095621/
Resumo: O principal objetivo desse trabalho é estudar o processamento de séries temporais para a realização de previsão utilizando redes neurais artificiais e os modelos ARIMA-GARCH. Com relação as redes neurais foram estudados os algoritmos de processamento temporal utilizando redes neurais alimentadas adiante e as redes recorrentes. Sendo que nas redes recorrentes o algoritmo utilizado para análise da série temporal foi o algoritmo de aprendizagem recorrente em tempo real (RTRL). Para os modelos ARIMA foi utilizada a metodologia desenvolvida por Box e Jenkins. Foram utilizadas as séries temporais de retornos diários do IBOVESPA, Petrobrás, Nasdaq, IBM e saca de 60Kg de soja como exemplo de aplicação das metodologias