Detalhes bibliográficos
Ano de defesa: |
2004 |
Autor(a) principal: |
Oliveira, Mauri Aparecido de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/12/12139/tde-07122021-095621/
|
Resumo: |
O principal objetivo desse trabalho é estudar o processamento de séries temporais para a realização de previsão utilizando redes neurais artificiais e os modelos ARIMA-GARCH. Com relação as redes neurais foram estudados os algoritmos de processamento temporal utilizando redes neurais alimentadas adiante e as redes recorrentes. Sendo que nas redes recorrentes o algoritmo utilizado para análise da série temporal foi o algoritmo de aprendizagem recorrente em tempo real (RTRL). Para os modelos ARIMA foi utilizada a metodologia desenvolvida por Box e Jenkins. Foram utilizadas as séries temporais de retornos diários do IBOVESPA, Petrobrás, Nasdaq, IBM e saca de 60Kg de soja como exemplo de aplicação das metodologias |