Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Santos, Cláudia Cristina dos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3147/tde-25082011-155119/
|
Resumo: |
O presente trabalho apresenta a previsão de demanda de água em sistemas urbanos de abastecimento através de Rede Neural Artificial (RNA) utilizando dados de consumo de água e variáveis meteorológicas e socioambientais. A RNA utilizada foi uma de três camadas chamada de rede de múltiplas camadas alimentadas adiante com o algoritmo de treinamento LLSSIM (Hsu et al., 1996). Neste estudo, foram utilizados os dados de consumo de água (SABESP) e meteorológicos (IAG/USP) para o período de 2001 a 2005 para Região Metropolitana de São Paulo (RMSP). As variáveis socioambientais e meteorológicas que podem afetar o consumo de água foram analisadas. A ETA Cantareira e o setor Itaim Paulista foram utilizados para avaliar a relação entre o consumo e as variáveis antrópicas e meteorológicas para o ano de 2005. Esses conjuntos de dados foram utilizados para o treinamento, o teste e a previsão da RNA. Para a ETA Cantareira, foram criados 8 modelos e para o setor Itaim Paulista 57, sendo que os modelos 9 a 57 correspondem à previsão ideal. O desempenho dos modelos foi avaliado pelo o erro médio, erro médio absoluto, erro médio quadrático, o coeficiente de correlação, exatidão, viés, POD, FAR, CSI e POFD. Para a ETA Cantareira o melhor desempenho ocorreu para a média de 12 horas e para o Itaim Paulista a média de 6 horas. Na previsão ideal observou-se que a memória do sistema é um fator importante, principalmente quando se tem dois intervalos de tempo anterior. Os resultados mostraram a importância da memória, pois ela ajuda a melhorar o desempenho da previsão A previsão horária foi obtida com níveis de erros aceitáveis. Comparando os resultados de todas as configurações dos modelos, observou-se que há uma tendência para pequenos erros. Finalmente, conclui-se que o método proposto pode ser utilizado para previsão de consumo obtendo uma boa previsão. |