Modelagem e implementação de banco de dados clínicos e moleculares de pacientes com câncer e seu uso para identificação de marcadores em câncer de pâncreas

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Bertoldi, Ester Risério Matos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
NGS
Link de acesso: http://www.teses.usp.br/teses/disponiveis/95/95131/tde-14032018-150144/
Resumo: O adenocarcinoma pancreático (PDAC) é uma neoplasia de difícil diagnóstico precoce e cujo tratamento não tem apresentado avanços expressivos desde a última década. As tecnologias de sequenciamento de nova geração (next generation sequencing - NGS) podem trazer importantes avanços para a busca de novos marcadores para diagnóstico de PDACs, podendo também contribuir para o desenvolvimento de terapias individualizadas. Bancos de dados são ferramentas poderosas para integração, padronização e armazenamento de grandes volumes de informação. O objetivo do presente estudo foi modelar e implementar um banco de dados relacional (CaRDIGAn - Cancer Relational Database for Integration and Genomic Analysis) que integra dados disponíveis publicamente, provenientes de experimentos de NGS de amostras de diferentes tipos histopatológicos de PDAC, com dados gerados por nosso grupo no IQ-USP, facilitando a comparação entre os mesmos. A funcionalidade do CaRDIGAn foi demonstrada através da recuperação de dados clínicos e dados de expressão gênica de pacientes a partir de listas de genes candidatos, associados com mutação no oncogene KRAS ou diferencialmente expressos em tumores identificados em dados de RNAseq gerados em nosso grupo. Os dados recuperados foram utilizados para a análise de curvas de sobrevida que resultou na identificação de 11 genes com potencial prognóstico no câncer de pâncreas, ilustrando o potencial da ferramenta para facilitar a análise, organização e priorização de novos alvos biomarcadores para o diagnóstico molecular do PDAC.