Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Bertoldi, Ester Risério Matos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/95/95131/tde-14032018-150144/
|
Resumo: |
O adenocarcinoma pancreático (PDAC) é uma neoplasia de difícil diagnóstico precoce e cujo tratamento não tem apresentado avanços expressivos desde a última década. As tecnologias de sequenciamento de nova geração (next generation sequencing - NGS) podem trazer importantes avanços para a busca de novos marcadores para diagnóstico de PDACs, podendo também contribuir para o desenvolvimento de terapias individualizadas. Bancos de dados são ferramentas poderosas para integração, padronização e armazenamento de grandes volumes de informação. O objetivo do presente estudo foi modelar e implementar um banco de dados relacional (CaRDIGAn - Cancer Relational Database for Integration and Genomic Analysis) que integra dados disponíveis publicamente, provenientes de experimentos de NGS de amostras de diferentes tipos histopatológicos de PDAC, com dados gerados por nosso grupo no IQ-USP, facilitando a comparação entre os mesmos. A funcionalidade do CaRDIGAn foi demonstrada através da recuperação de dados clínicos e dados de expressão gênica de pacientes a partir de listas de genes candidatos, associados com mutação no oncogene KRAS ou diferencialmente expressos em tumores identificados em dados de RNAseq gerados em nosso grupo. Os dados recuperados foram utilizados para a análise de curvas de sobrevida que resultou na identificação de 11 genes com potencial prognóstico no câncer de pâncreas, ilustrando o potencial da ferramenta para facilitar a análise, organização e priorização de novos alvos biomarcadores para o diagnóstico molecular do PDAC. |