O microRNA miR-696 regula a expressão da proteína PGC-1α e induz à disfunção mitocondrial em células musculares de camundongos através do sistema SNARK/miR-696/PGC-1α

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Queiroz, André Lima
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/17/17131/tde-30032017-162044/
Resumo: A disfunção mitocondrial pode ser um mecanismo chave associado à ocorrência de doenças metabólicas como o diabetes. Neste contexto, é importante obeservar os mecanismos envolvidos nesse processo. MicroRNAs (miRs) são conhecidos por regular a expressão de genes em vários processos fisiológicos, incluindo o metabolismo de glicose e ácidos graxos, biogênese mitocondrial, proliferação, diferenciação e morte celular no músculo esquelético. Usando análise \"in silico\" (Sfold2.2) identificamos 219 microRNAs que, potencialmente, se ligam à região 3 \'UTR do PGC-1?, um gene envolvido na biogênese mitocondrial e no metabolismo de glicose. Dos 219 candidatos, encontramos um alto valor de energia livre de hibridização entre o microRNA miR-696 e PGC-1? (-29,8 kcal / mol), sugerindo que o miR-696 poderia estar envolvido na regulação negativa do PGC-1? resultando em disfunção mitocondrial. Consistente com esta hipótese, observamos que a expressão do miR-696 apresentou-se aumentada nos músculos esqueléticos de dois modelos de camundongos com diabetes: camundongos diabéticos induzidos por STZ e camundongos alimentados com dieta hiperlipídica. Para compreender se o miR-696 regula a disfunção mitocondrial utilizamos células musculares C2C12 expostas a uma alta dose de ácido palmítico (700 µM) durante 24 horas, o que causou uma redução na expressão de genes mitocondriais, bem como no consumo de oxigênio. Vale destacar que a inibição do miR-696 através da transfecção de oligonucleotídeos antisenso (ASO) preveniu, parcialmente, a perda da função mitocondrial de células C2C12 tratadas com ácido palmítico. Curiosamente, não houve nenhuma alteração nos níveis de miR-696 em modelos envolvidos com a proteína AMPK, tal como em células C2C12 incubadas com uma droga ativadora de AMPK (AICAR) e no músculo esquelético de camundongos transgênicos superexpressando AMPK?2 com o domínio quinase inativo ou AMPK?3 com mutação de ativação crônica (R70Q). Em contraste, a expressão alterada de uma quinase relacionadas com a AMPK, SNF1-AMPK-related kinase (SNARK), recentemente demonstrada por ter sua expressão aumentada em virtude do envelhecimento, exerceu efeitos significativos sobre a expressão do miR- 696, como por exemplo sua redução dependente do knockdown de SNARK em células C2C12. Consistente com estes resultados, a superexpressão de SNARK em células C2C12 resultou no aumento da expressão do miR-696 e redução na expressão do PGC-1?, bem como no consumo de oxigénio. Nossos resultados demonstram que o estresse metabólico aumenta a expressão do miR-696 no músculo esquelético, que por sua vez inibe a sinalização da PGC-1? e a função mitocondrial. Ainda, apesar da AMPK não se apresentar como mediadora da expressão do miR-696, SNARK pode desempenhar um papel neste processo através do mecanismo de sinalização SNARKmiR-696-PGC-1?.