Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Moraes, Davi Almeida |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/85/85133/tde-03022020-110813/
|
Resumo: |
Neste trabalho foi desenvolvida uma planta experimental inspirada em um reator nuclear de potência do tipo PWR e posterior aplicação de Inteligência Artificial na Monitoração e Diagnóstico de Falhas, por meio dos métodos GMDH (Group Method of Data Handling) e RNA (Redes Neurais Artificiais). Com a planta experimental, tornou-se possível aplicar conceitos inovadores de modelagem de sistemas (Digital Twin) on line para a monitoração e diagnóstico de falhas individuais e/ou combinadas. Conclui-se que, embora ambos os sistemas de monitoração apresentaram resultados satisfatórios, o GMDH demonstrou um melhor desempenho em relação às Redes Neurais, pois além de apresentar valores de desvios médios menores do que o modelo utilizando Redes Neurais, foi possível realizar a monitoração de todas as variáveis, enquanto que utilizando Redes Neurais não foi possível monitorar as variáveis de potência do aquecedor, nível, e potência e vazões das bombas. A inserção de falhas em uma ou mais variáveis de temperatura, repercutiu na estimativa da rede para as demais variáveis, porém não impediu que o Sistema de Monitoração identificasse a falha. Para determinar o comportamento do Sistema de Monitoração com falhas múltiplas, foram aplicadas falhas simultâneas nos sensores de temperatura. |