Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Andrade, Pablo de Morais |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/95/95131/tde-04102019-141931/
|
Resumo: |
Com o desenvolvimento do sequenciamento em larga escala, novas tecnologias surgiram para auxiliar o estudo de sequências de ácidos nucleicos (DNA e cDNA); como consequência, o desenvolvimento de novas ferramentas para analisar o grande volume de dados gerados fez-se necessário. Entre essas novas tecnologias, uma, em particular, chamada Imunoprecipitação de Cromatina seguida de sequenciamento de DNA em larga escala ou CHIP-Seq, tem recebido muita atenção nos últimos anos. Esta tecnologia tornou-se um método usado amplamente para mapear sítios de ligação de proteínas de interesse no genoma. A análise de dados resultantes de experimentos de ChIP-Seq é desaadora porque o mapeamento das sequências no genoma apresenta diferentes formas de viés. Os métodos existentes usados para encontrar picos em dados de ChIP-Seq apresentam limitações relacionadas ao número de amostras de controle e tratamento usadas, e em relação à forma como essas amostras são combinadas. Nessa tese, mostramos que métodos baseados em testes estatísticos de hipótese tendem a encontrar um número muito maior de picos à medida que aumentamos o tamanho da amostra, o que os torna pouco conáveis para análise de um grande volume de dados. O presente estudo descreve um método estatístico Bayesiano, que utiliza meta-análise para encontrar sítios de ligação de proteínas de interesse no genoma resultante de experimentos de ChIPSeq. Esse métodos foi chamado Meta-Analysis Bayesian Approach ou MABayApp. Nós mostramos que o nosso método é robusto e pode ser utilizado com diferentes números de amostras de controle e tratamentos, assim como quando comparando amostras provenientes de diferentes tratamentos. |