Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Boen, Vinicius de Oliveira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55137/tde-01122022-093014/
|
Resumo: |
Este projeto engloba técnicas de aprendizado de máquina aplicadas no contexto de People Analytics com a aplicação de modelos preditivos supervisionados para classificação de turnover, com o objetivo de auxiliar o processo de tomada de decisão de uma empresa cuja o nome não será citado, impactando diretamente na performance organizacional. Os dados utilizados foram extraídos de uma plataforma de People Analytics, que centraliza as informações dos funcionários. A construção do conjunto de dados final ocorreu através da utilização de técnicas de mineração para manipulação e tratamento. Em seguida, foram aplicadas técnicas de pré-processamento para adequar os dados aos algoritmos de classificação Random Forest, Naive Bayes, Regressão Logística e Decision Tree. Os resultados foram compilados e analisados considerando as principais medidas de avaliação para classificação. Os classificadores Random Forest e Regressão Logística apresentaram os melhores desempenhos e por isso foram selecionados para a etapa de interpretação com a ferramenta SHAP. Dessa análise foi selecionado o classificador regressão logística para a última etapa de análise pós predição, onde foi observado a relação da probabilidade de turnover dos casos de falso positivo com o tempo até turnover futuro desses casos. |