People Analytics: Aprendizado de máquina na gestão estratégica de pessoas, aplicando modelo preditivo de turnove

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Boen, Vinicius de Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55137/tde-01122022-093014/
Resumo: Este projeto engloba técnicas de aprendizado de máquina aplicadas no contexto de People Analytics com a aplicação de modelos preditivos supervisionados para classificação de turnover, com o objetivo de auxiliar o processo de tomada de decisão de uma empresa cuja o nome não será citado, impactando diretamente na performance organizacional. Os dados utilizados foram extraídos de uma plataforma de People Analytics, que centraliza as informações dos funcionários. A construção do conjunto de dados final ocorreu através da utilização de técnicas de mineração para manipulação e tratamento. Em seguida, foram aplicadas técnicas de pré-processamento para adequar os dados aos algoritmos de classificação Random Forest, Naive Bayes, Regressão Logística e Decision Tree. Os resultados foram compilados e analisados considerando as principais medidas de avaliação para classificação. Os classificadores Random Forest e Regressão Logística apresentaram os melhores desempenhos e por isso foram selecionados para a etapa de interpretação com a ferramenta SHAP. Dessa análise foi selecionado o classificador regressão logística para a última etapa de análise pós predição, onde foi observado a relação da probabilidade de turnover dos casos de falso positivo com o tempo até turnover futuro desses casos.