Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
SANTOS, Orlando de Oliveira dos
 |
Orientador(a): |
SANTOS, Mauro Guida dos |
Banca de defesa: |
BEZERRA NETO, Egídio,
CARVALHO, Josabete Salgueiro Bezerra de,
OLIVEIRA, Luciana Maia Nogueira de,
LIMA, José Romualdo de Sousa |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal Rural de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Produção Agrícola
|
Departamento: |
Unidade Acadêmica de Garanhuns
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6165
|
Resumo: |
This study aimed to evaluate the ecophysiological characteristics of the species Zea mays, Sorghum bicolor and Brachiaria decumbens under water stress conditions in a greenhouse. The experiment was conducted in a completely randomized design, using three species, Zea mays, Sorghum bicolor and Brachiaria decumbens, with 10 plants of each species under two water regimes (control and stress). The parameters evaluated were: soil moisture (Smoisture) vapor pressure deficit (VPD), leaf water potential (Ψleaf); gas exchange (net CO2 assimilation (A), stomatal conductance (gs), transpiration (E) and intrinsic water use efficiency (WUEi)), chlorophyll a fluorescence (photochemical quenching (qP), non-photochemical quenching (NPQ), electron transport rate (ETR) and maximum quantum efficiency in Photosystem II (Fv / Fm)); and biochemical analysis (total soluble carbohydrate (TSC), total free aminoacids (TFA), total soluble protein (TSP), chlorophyll a (Chla), chlorophyll b (Chlb) and carotenoids (car). The data of leaf water potential and soil moisture were submitted to Student's T test with a significance level of 5%. When subjected to 21 days of water deficit, the species Z. mays declined 248% in Ψleaf, 87% in stomatal conductance, 53% in net CO2 assimilation, 84% in transpiration, 156% in intrinsic water use efficiency, 54% in photochemical quenching, 67% in electron transport rate, 10% in Fv / Fm and 17% in chlorophyll a; S. bicolor showed a decrease in Ψleaf about 212%, 42% in stomatal conductance, 26% in net CO2 assimilation, 31% in transpiration, and 40% in electron transport rate; and in the species B. decumbens was observed a decrease in Ψleaf about 105%, 36% in stomatal conductance, 31% in net CO2 assimilation, 24% in transpiration, 34% in intrinsic water use efficiency, 53% in photochemical quenching, 56% in electron transport rate, 54% in total free amino acid content. The species which presented the smallest decrease related to the evaluated parameters was S. bicolor. From 14 analyzed parameters, S. bicolor showed decrease in 5 of them, while the other two species reduced their rates in 9 at least. |