Secamento parcial do sistema radicular no cultivo da acerola em condições do bioma da chapada Diamantina.

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: CARVALHO, Gian Carlo lattes
Orientador(a): WILLADINO, Lilia Gomes
Banca de defesa: SILVA, Alisson Jadavi Pereira da, MUSSER, Rosimar dos Santos, SILVA, Ênio Farias de França e, SILVA, Manassés Mesquita da
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural de Pernambuco
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Agrícola
Departamento: Departamento de Engenharia Agrícola
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5609
Resumo: The effective use of water has been the key component for food production and for the high quality of products in the arid and semiarid regions due to the increasing lack of available water resources. The water deficit may yield several crop physiological responses from which stomatal closure and transpiration reduction stand out. The partial root drying technique has been an alternative for gain in yield an increase of water use efficiency. The objectives of the work were by means of strategies for use of PRD, to select an irrigation schedule that allow to reduce water from irrigation without significant loss of fruit yield. Yield and water use efficiency were evaluated as well root system distribution, soil water distribution and water extraction by plants. The PRD technique was applied in an experiment inside an area of Ceral farm from Organic Bioenergy Company at chapada Diamantina Lençois, county, Bahia State with the varieties of Bermuda Cherry: Junco and Rubra using 4 x 2m spacing irrigated by autocompensating drippers of 4 L h-1 flow rate. The experiment followed a random block design with two varieties, five irrigation schedules and three replications totalizing 30 experimental plots. The irrigation schedules were based upon the percent of reduction of calculated water depth, that was fixed in 50% and on the time for switching irrigation side of the plant (7, 14, and 21 days), where: (PRD 7 – reduction of 50% ETc switching plant side every 7 days, PRD 14 – reduction of 50% ETc switching plant side every 14 days, PRD 21 – reduction of 50% ETc switching plant side every 21 days, IF – reduction of 50% ETc keeping the irrigation just at one side of the plant during the whole cycle e IP – full irrigation, i.e., 100% ETc). The largest productivities were registered when irrigation has supplied 100%ETc and for PRD with reduction 50% ETc switching plant sides every 7 and 14 days. The water use efficiency was larger for irrigation schedule with PRD by switching irrigated plant side every 7 days whose value was twice the one for treatment with 100% ETc. Soil water distribution is similar for all schedules six hours after irrigation. Soil water available to plants did not reduce so drastically at the non irrigated side for PRD with change in irrigation side every 7 days compared to others treatments. This resulted in larger yields for this treatment. The root system showed larger development at shallower soil layers. The regions of larger water extraction are influenced by amount of available water and by root length density.