Comparação de modelos MLP/RNA e modelos Box-Jenkins em séries temporais não lineares

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Flores, João Henrique Ferreira
Orientador(a): Werner, Liane
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
ANN
MLP
Link de acesso: http://hdl.handle.net/10183/17150
Resumo: A capacidade de prever resultados futuros, ao se analisar uma série de dados, é uma importante ferramenta para o planejamento de qualquer empresa ou indústria. Porém, a literatura oferece muitas opções de ferramentas e modelos estatísticos que permitem obter estas previsões. Cada qual com suas características e recomendações. Dentre estes modelos, destacam-se os modelos de Box e Jenkins, e os modelos de Redes Neurais Artificiais (RNA) - com destaque aos modelos de perceptron de múltiplas camadas (MLP). Estas duas diferentes abordagens são comparadas nesta dissertação com relação a sua capacidade de obter previsões acuradas em séries de dados não lineares quanto a sua média. As abordagens foram comparadas utilizando-se a série mensal do índice de produção física industrial do Estado do Rio Grande do Sul. Bem como a série anual de manchas solares, sendo a segunda utilizada como caso-controle para as comparações, devido ao fato de que as suas propriedades já foram amplamente estudadas. No estudo da série do índice de produção física mensal, os modelos de Box e Jenkins obtiveram melhor rendimento. Na série das manchas solares foram os modelos MLP que se destacaram. Desta forma, não é possível afirmar se alguma das abordagens é superior - tratando-se de séries de dados não lineares quanto a sua média.