[en] A COMPARISON STUDY OF BOX & JENKINS ARMA (P,Q) STRUCTURAL IDENTIFICATION PROCEDURES

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: LILIAN MANOEL DE MENEZES WILLENBOCKEL
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13986&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13986&idi=2
http://doi.org/10.17771/PUCRio.acad.13986
Resumo: [pt] A modelagem Box & Jenkins (1970) para previsão de séries temporais univariadas, de acordo com a proposta inicial das autoras, é composta de quatro etapas: Indentificação de Modelos, Estimação dos Parâmetros, Testes Estatísticos para Validação do Modelo e Previsão. Dentre as etapas citadas, a Identificação de Modelos é a de maior dificuldade na utilização prática da metodologia Box & Jenkins, é baseada no uso de estimadores para as funções de autocorrelação parcial da série, não apresenta dificuldades no caso específico de modelos puros. Porém no tratamento de modelos mistos (ARMA), onde há presença das duas componentes (AR e MA), a utilização destes estimadores muitas vezes não leva a conclusões definitivas quanto à estrutura a ser considerada. Numa tentativa de diminuição da dificuldade para indentificar modelos ARMA (p, q), existem na literatura especializada várias propostas alternativas de métodos de identificação. Este trabalho se propõe a uma análise crítica de alguns métodos e dos resultados obtidos a partir destes. A análise foi concentrada nos seguintes métodos: - Função de Autocorrelação Inversa, (Cleveland, 1972) e (Chatfield, 1979); - R & S Arrays (Gray, Kelley e Mc. Intire, 1978); - Corner Method (Béguin, Gourieroux e Monfort, 1980); - Função de Autocorrelação Extendida (Tião e Tsay, 1982); - Função de Autocorrelação Parcial Generalizada (Glasbey, 1982); cujos desempenhos foram comparados entre si e com a metodologia tradicional. Foram consideradas cinco estruturas: AR(1), AR(2), MA(1), MA(2) e ARMA(1,1). Para cada estrutura foram escolhidos três modelos, utilizando como critério sua localização na região de estacionariedade / inversibilidade. Foram simuladas quinze séries para cada modelo, variando-se a semente e o nível da série, totalizando desta forma, 225 séries, que foram submetidas a cada um dos métodos em estudo e cujos resultados foram comparados e analisados. A partir dos resultados obtidos chegou-se a várias conclusões úteis na prática quanto à utilização de cada método, porém estas conclusões são apenas relativas à amostra utilizada, pois para se chegar a conclusões definitivas o tamanho da amostra deveria ser maior e critérios estatísticos de análise poderiam ser utilizadas. Dentre as conclusões obtidas destaca-se a seguinte: embora alguns métodos alternativos de identificação tenham apresentado grande melhoria em relação ao método tradicional, o problema da identificação ainda não se encontra resolvido, assim muitas das tentativas de Box & Jenkins Automáticos tornam-se sensíveis a falhar e a presença do analista torna-se necessária.