Essays in nonparametric econometrics and infinite dimensional mathematical statistics

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Horta, Eduardo de Oliveira
Orientador(a): Ziegelmann, Flavio Augusto
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/133007
Resumo: A presente Tese de Doutorado é composta de quatro artigos científicos em duas áreas distintas. Em Horta, Guerre e Fernandes (2015), o qual constitui o Capítulo 2 desta Tese, é proposto um estimador suavizado no contexto de modelos de regressão quantílica linear (Koenker e Basset, 1978). Uma representação de Bahadur-Kiefer uniforme é obtida, a qual apresenta uma ordem assintótica que domina aquela correspondente ao estimador clássico. Em seguida, prova-se que o viés associado à suavização é negligenciável, no sentido de que o termo de viés é equivalente, em primeira ordem, ao verdadeiro parâmetro. A taxa precisa de convergência é dada, a qual pode ser controlada uniformemente pela escolha do parâmetro de suavização. Em seguida, são estudadas propriedades de segunda ordem do estimador proposto, em termos do seu erro quadrático médio assintótico, e mostra-se que o estimador suavizado apresenta uma melhoria em relação ao usual. Como corolário, tem-se que o estimador é assintoticamente normal e consistente à ordem p n. Em seguida, é proposto um estimador consistente para a matriz de covariância assintótica, o qual não depende de estimação de parâmetros auxiliares e a partir do qual pode-se obter diretamente intervalos de confiança assintóticos. A qualidade do método proposto é por fim ilustrada em um estudo de simulação. Os artigos Horta e Ziegelmann (2015a, 2015b, 2015c) se originam de um ímpeto inicial destinado a generalizar os resultados de Bathia et al. (2010). Em Horta e Ziegelmann (2015a), Capítulo 3 da presente Tese, é investigada a questão de existência de certos processos estocásticos, ditos processos conjugados, os quais são conduzidos por um segundo processo cujo espaço de estados tem como elementos medidas de probabilidade. Através dos conceitos de coerência e compatibilidade, obtémse uma resposta afirmativa à questão anterior. Baseado nas noções de medida aleatória (Kallenberg, 1973) e desintegração (Chang e Pollard, 1997; Pollard, 2002), é proposto um método geral para construção de processos conjugados. A teoria permite um rico conjunto de exemplos, e inclui uma classe de modelos de mudança de regime. Em Horta e Ziegelmann (2015b), Capítulo 4 desta Tese, é proposto – em relação com a construção obtida em Horta e Ziegelmann (2015a) – o conceito de processo fracamente conjugado: um processo estocástico real a tempo contínuo, conduzido por uma sequência de funções de distribuição aleatórias, ambos conectados por uma condição de compatibilidade a qual impõe que aspectos da distribuição do primeiro processo são divisíveis em uma quantidade enumerável de ciclos, dentro dos quais este tem como marginais, precisamente, o segundo processo. Em seguida, mostra-se que a metodologia de Bathia et al. (2010) pode ser aplicada para se estudar a estrutura de dependência de processos fracamente conjugados, e com isso obtém-se resultados de consistência à ordem p n para os estimadores que surgem naturalmente na teoria. Adicionalmente, a metodologia é ilustrada através de uma implementação a dados financeiros. Especificamente, o método proposto permite que características da dinâmica das distribuições de processos de retornos sejam traduzidas em termos de um processo escalar latente, a partir do qual podem ser obtidas previsões de quantidades associadas a essas distribuições. Em Horta e Ziegelmann (2015c), Capítulo 5 da presente Tese, são obtidos resultados de consistência à ordem p n em relação à estimação de representações espectrais de operadores de autocovariância de séries de tempo Hilbertianas estacionárias, em um contexto de medições imperfeitas. Os resultados são uma generalização do método desenvolvido em Bathia et al. (2010), e baseiam-se no importante fato de que elementos aleatórios em um espaço de Hilbert separável são quase certamente ortogonais ao núcleo de seu respectivo operador de covariância. É dada uma prova direta deste fato.