Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Müller, Fernanda Maria |
Orientador(a): |
Righi, Marcelo Brutti |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/197883
|
Resumo: |
Nesta tese, apresentamos uma compilação de três artigos discutindo o risco de modelo para medidas de risco. No primeiro artigo, usando simulação de Monte Carlo, analisamos o desempenho de modelos multivariados para previsão do Value at Risk (VaR), da Expected Shortfall (ES) e do Expected Value at Risk (EVaR). Em nossa avaliação numérica, consideramos diferentes cenários, quanto às distribuições marginais, correlação e número dos ativos da carteira, e os seguintes modelos: Simulação Histórica (HS), Correlação Condicional Dinâmica - Autorregressivo com Heterocedasticidade Condicional Generalizada (DCC -GARCH), cópulas regulares, cópulas Vine e cópulas Nested Archimedean (NAC). Nossos resultados indicam que quando a distribuição marginal é Gaussiana, as cópulas Regular e Vine demonstram melhor desempenho. Por outro lado, para cenários gerados com a distribuição t de Student, observamos melhor desempenho das cópulas Nested Archimedean. No segundo artigo, propomos uma abordagem robusta de mensuração do risco que minimiza o valor esperado da soma entre os custos de superestimação e subestimação do risco. Consideramos a incerteza tomando o supremo sobre medidas de probabilidade alternativas. Fornecemos resultados que garantem a existência de uma solução e analisamos as propriedades do minimizador e do mínimo como medidas de risco e de desvio, respectivamente. Exploramos o uso de nossa função de perda como um critério auxiliar para selecionar modelos de previsão de risco. Além disso, usamos nossa função de perda para determinar a proporção do risco de modelo que deve ser adicionada como penalização às medidas de risco para cobrir as perdas resultantes desse risco. Os resultados empíricos indicam que nossa medida leva a uma determinação do requerimento de capital mais parcimoniosa e reduz os custos mencionados. Além disso, os resultados demonstram vantagens da nossa função de perda em relação às abordagens tradicionais usadas para seleção de modelos de previsão de risco. Finalmente, no terceiro artigo, revisamos a literatura que propõem medidas de risco de modelo e alternativas para incorporar o risco de modelo na determinação de capital. A apresentação centra-se sobre os procedimentos que podem ser aplicados na previsão de risco. Observamos que a abordagem do pior caso e da função de perda são os principais grupos de medidas de risco de modelo. Encontramos duas principais estratégias para incorporar o risco de modelo na determinação de capital: previsões de risco ajustadas ao risco de modelo e previsões de risco ajustadas ao backtesting. Ilustramos empiricamente nossas descobertas. Além disso, apontamos lacunas e direções de trabalhos futuros que podem ser explorados. |