Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Pinheiro, Felipe Grillo |
Orientador(a): |
Cybis, Gabriela Bettella |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/239263
|
Resumo: |
Os modelos filogenéticos para evolução de traços (fenotípicos) permitem a estimativa de correlações evolutivas entre um conjunto de traços observados numa amostra de organismos relacionados. Ao modelar diretamente a evolução dos traços numa árvore filogenética num contexto Bayesiano, a estrutura do modelo nos permite controlar para a história evolutiva compartilhada entre os organismos da amostra e evitar as inferências espúrias originadas pelo parentesco. Nestes modelos, as correlações relevantes são definidas por meio do intervalo de credibilidade das correlações marginais. No entanto, as correlações selecionadas por si só podem não fornecer a melhor informação sobre as relações entre as características em estudo. A sua estrutura de associação, em contraste, fornece uma informação clara sobre associações diretas entre os traços em estudo. A fim de empregar um método baseado em modelo para identificar a estrutura de associação subjacente entre as variáveis, exploramos a utilização de modelos Gaussianos com grafos (GGM) para a seleção das covariâncias. Modelamos a matriz de precisão com a distribuição G-Wishart, uma priori conjugada que resulta em estimativas de precisão esparsa. Avaliamos a nossa abordagem através de simulações de Monte Carlo e comparamos os resultados com o método padrão, onde nenhuma estrutura de associação é explicitamente modelada. Também testamos a nossa abordagem para examinar a estrutura de associação e correlações evolutivas em dois conjuntods de dados: um envolvendo traços fenotípicos dos tentilhões de Darwin e outro envolvendo traços genômicos e fenotípicos de procariotos. A nossa abordagem fornece uma solução sistemática para a eliminação de correlações espúrias e melhor inferência para as matrizes de precisão e correlação, especialmente para as variáveis condicionalmente independentes, que são o alvo da esparsidade nos GGMs. Combinar a inferência das correlações evolutivas e da estrutura de associação permite uma seleção mais precisa das características que potencialmente interagiram ou interagem ao longo do processo evolutivo dos organismos estudados. |