Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Stein, Josiane |
Orientador(a): |
Lopes, Silvia Regina Costa |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/211848
|
Resumo: |
Neste trabalho estudamos uma classe de processos a tempo contínuo advinda da solução da equação de Langevin generalizada. Consideramos para o ruído um processo de Lévy. Para ns de simulação, restringimos o ruído a um processo de Lévy α-estável. Apresentamos um estudo de algumas medidas de dependência que possam substituir a função de autocovariância, no caso α-estável. Consideramos três diferentes medidas de dependência: codiferença, covariância espectral e covariação e provamos diversos resultados relativos a elas. Além disso, apresentamos um estudo de simulações para exemplos de processos desta classe, mostrando sua geração, sua codiferença e covariância espectral teóricas e empíricas. Provamos propriedades teóricas para os processos em estudo, considerando ruídos do tipo movimento Browniano, α-estável e Lévy. Propomos procedimentos de estimação dos parâmetros baseados em mínimos quadrados, máxima verossimilhança e metodologia Bayesiana considerando o processo solução da equação de Langevin clássica, ou seja, o processo Ornstein-Uhlenbeck, e o chamado processo Cosseno. Para obter a previsão de processos α-estáveis estacionários, utilizamos dois preditores lineares: um baseado na dispersão e outro na covariação. Por m, apresentamos aplicações a duas séries temporais: mortalidade cardiovascular na cidade de Los Angeles e preços das ações da companhia Apple. |