Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Giacomel, Felipe dos Santos |
Orientador(a): |
Galante, Renata de Matos |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/134586
|
Resumo: |
A previsão de séries temporais financeiras tem sido um tópico popular da literatura nos últimos anos. Contudo, embora muitos estudos de previsão de séries temporais foquem na previsão exata de valores futuros, defendemos que este tipo de previsão é de difícil aplicação em cenários reais, sendo mais vantajoso transformar este problema de previsão em um problema de classificação que indique se a série temporal irá subir ou descer no próximo período. Neste trabalho é proposto um método de compra e venda de ações baseado nas previsões feitas por dois ensembles de redes neurais adaptados para diferentes perfis de investimento: um para investidores moderados e outro para investidores mais agressivos. Os resultados desses ensembles preveem se determinada ação irá subir ou descer no próximo período ao invés de prever seus valores futuros, permitindo que se criem recomendações de operações de compra ou venda para o próximo período de tempo. A criação de tais ensembles, contudo, pode encontrar dificuldades no fato de que cada mercado se comporta de uma maneira diferente: fatores como a sazonalidade e a localidade da bolsa de valores são determinantes no desenvolvimento das redes neurais apropriadas. Para mostrar a eficiência do nosso método em diferentes situações, o mesmo é avaliado exaustivamente em dois conjuntos de dados diferentes: os mercados de ações norteamericano (S&P 500) e brasileiro (Bovespa). Operações reais foram simuladas nestes mercados e fomos capazes de lucrar em 89% dos casos avaliados, superando os resultados das abordagens comparativas na grande maioria dos casos. |