Proposta e avaliação de features para negociação algorítmica em mercado financeiro

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Linchen, Newton Paulo
Orientador(a): Galante, Renata de Matos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/259164
Resumo: Séries temporais de ativos financeiros de negociação são conhecidas por ter propriedades estocásticas que tornam a previsão uma tentativa quase fútil. Na Economia, a teoria dominante da Hipótese do Mercado Eficiente propõe que qualquer tentativa de prever os preços futuros de um ativo negociável é em vão e não deve ser perseguida. Nas últimas décadas, o surgimento de algoritmos de aprendizado de máquina deu à comunidade de in vestimentos ferramentas interessantes para avançar na pesquisa de previsão. No entanto, entendemos que algoritmos não são suficientes para fazer previsões bem-sucedidas: para construir modelos melhores, o pesquisador deve empregar o desenvolvimento de recur sos, especialmente com o conhecimento e experiência de um praticante e especialista no campo. Neste trabalho, avaliamos o desempenho de um algoritmo de classificação (QDA - Análise Discriminante Quadrática) com a adição de recursos, comparando os resultados com um benchmark (compra e retenção) e um experimento de linha de base. A investigação foi realizada usando o Contrato Futuro do Índice Bovespa (Ibovespa Futuro), fazendo previsões de curto prazo em um ambiente simulado.