Análise de perfis humanos em cenários industriais e acadêmicos balizada por ferramentas multivariadas

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Lohmann, Matheus dos Reis
Orientador(a): Anzanello, Michel José
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/205861
Resumo: A aplicação de técnicas multivariadas encontra diversas aplicações práticas tanto na análise de agrupamentos quanto na classificação e desperta interesse nos mais diversos setores. Em segmentos industriais, técnicas multivariadas são tipicamente utilizadas na programação de produção e monitoramento de processos produtivos, mas suas aplicações não ficam restritas a este segmento. Setores como o educacional tem apresentado interesse crescente na aplicação de técnicas multivariada para melhor análise de dados e geração de estratégias. Esta dissertação propõe métodos para a análise de perfis humanos através de ferramentas multivariadas com propósitos de agrupamentos e classificação em diferentes segmentos. Para tal, o primeiro artigo propõe uma estrutura multivariada para formar grupos consistentes de trabalhadores com base em seus padrões de aprendizado. Em termos de sua operacionalização, aplica-se a análise de componentes principais (ACP) a parâmetros oriundos da modelagem de curvas de aprendizagem (CAs) sobre os dados de desempenho de tais trabalhadores; a manipulação dos parâmetros gerou um índice de importância de variável (IIV) que orientou um processo iterativo de remoção das variáveis. Ao aplicar a estrutura proposta a um processo de fabricação de calçados, descobriu-se que apenas 8 dos 29 parâmetros oriundos das CAs foram relevantes na inserção dos trabalhadores em dois grupos distintos por suas características de aprendizagem. Em seguida, no artigo 2, é apresentada uma estrutura para selecionar um subconjunto de parâmetros das CAs com o propósito de classificar trabalhadores de acordo com seus padrões de aprendizado; um índice de importância de parâmetro (IIP) é gerado como base nas saídas das regressões Partial Least Square (PLS) e Least Absolute Shrinkage and Selection Operator (LASSO). Quando aplicado a dados reais, identificou-se que 3 dos 29 parâmetros originais foram relevantes na classificação dos trabalhadores em duas linhas de produção existentes; a estrutura proposta atingiu 100% de classificações corretas com as três ferramentas de classificação utilizadas. Por fim, o artigo 3 traz uma abordagem multivariada para selecionar as variáveis com maior influência sobre três possíveis desfechos de alunos de graduação: diplomação, evasão interna (troca de curso dentro da mesma IES) ou evasão externa. Variáveis do perfil acadêmico e dados de desempenho foram analisadas através da técnica “omita uma variável por vez” (OUVV) em conjunto com ferramentas de classificação. Ao ser aplicada a dados de ingressantes em cursos de engenharias, a abordagem obteve acurácia de 91,22%, retendo 22,22% das variáveis originais; destaca-se o fato da maioria dos procedimentos realizados apontar as variáveis de desempenho acadêmico (aprovações e reprovações) como as mais influentes no processo.