Seleção de variáveis para classificação de bateladas produtivas

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Kahmann, Alessandro
Orientador(a): Anzanello, Michel José
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/96394
Resumo: Bancos de dados oriundos de processos industriais são caracterizados por elevado número de variáveis correlacionadas, dados ruidosos e maior número de variáveis do que observações, tornando a seleção de variáveis um importante problema a ser analisado no monitoramento de tais processos. A presente dissertação propõe sistemáticas para seleção de variáveis com vistas à classificação de bateladas produtivas. Para tanto, sugerem-se novos métodos que utilizam Índices de Importância de Variáveis para eliminação sistemática de variáveis combinadas a ferramentas de classificação; objetiva-se selecionar as variáveis de processo com maior habilidade discriminante para categorizar as bateladas em classes. Os métodos possuem uma sistematização básica que consiste em: i) separar os dados históricos em porções de treino e teste; ii) na porção de treino, gerar um Índice de Importância de Variáveis (IIV) que ordenará as variáveis de acordo com sua capacidade discriminante; iii) a cada iteração, classificam-se as amostras da porção de treino e removem-se sistematicamente as variáveis; iv) avaliam-se então os subconjuntos através da distância Euclidiana dos resultados dos subconjuntos a um ponto hipotético ótimo, definindo assim o subconjunto de variáveis a serem selecionadas. Para o cumprimento das etapas acima, são testadas diferentes ferramentas de classificação e IIV. A aplicação dos métodos em bancos reais e simulados verifica a robustez das proposições em dados com distintos níveis de correlação e ruído.