Simulação e operação de célula de combustível com geração in situ de hidrogênio através da corrosão alcalina do alumínio

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Porciúncula, Cleiton Bittencourt da
Orientador(a): Marcilio, Nilson Romeu, Tessaro, Isabel Cristina
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/72908
Resumo: Células de combustível são dispositivos onde ocorre a oxidação eletroquímica de um combustível, apresentando maior eficiência, segurança e escalabilidade do que a maioria dos motores de combustão interna. A geração de hidrogênio a partir do alumínio possui a vantagem de utilizar-se metal que pode ser completamente recuperado, reciclado e reprocessado. Além disso, refugos feitos à base de alumínio tais como: latas de bebidas; peças de dispositivos eletrônicos; brinquedos; dentre outros, podem ser utilizados para geração de hidrogênio, o que incentivaria a reciclagem de materiais. A reação ocorre com a água na presença de álcalis fortes, tais como NaOH e KOH, que atuam como catalisadores, não sendo assim consumidos no processo. O objetivo principal deste trabalho é a construção de uma célula de combustível de baixa temperatura, denominada na literatura de PEMFC (Proton Exchange Membrane Fuel Cell, Célula de Combustível com Membrana de Troca de Prótons) acoplada à geração local de hidrogênio por meio da corrosão alcalina do alumínio. Foram realizados experimentos variando-se os seguintes itens: concentração dos álcalis (de 1 a 3 mol.L-1), temperatura (295 a 345 K) e forma do metal (folhas de alumínio com 0,02 mm de espessura, lâminas com 0,5 mm e com 1 mm de espessura). Nesta primeira etapa, verificou-se que a concentração e temperatura influenciam fortemente a reação. Os tempos de reação variaram desde valores próximos de 2 minutos (reação de folhas de alumínio em presença de NaOH a 3 mol.L-1 na temperatura de 325 K) até tempos da ordem de 700 minutos (em experimentos utilizando lâminas de 1 mm a 315 K em presença de KOH 1 mol.L-1). A análise de difração de raios-x juntamente com a microscopia eletrônica de varredura (MEV) confirmou a presença de hidróxido de alumínio na forma de um precipitado de gibsita sobre uma amostra metálica após reação com NaOH, possibilitando a visualização da estrutura cristalina deste precipitado. Após construção e operação do reator alumínio-água acoplado à célula de combustível, obteve-se valores de diferença de potencial máximos da ordem de 150 mV e densidade de corrente máxima próxima a 5.10-3 mA.cm-2. Estes valores encontram-se muito abaixo dos valores esperados para uma célula de combustível de hidrogênio comum (ao redor de 700 mV e 200-400 mA.cm-2, respectivamente). Um modelo transiente simplificado do sistema, baseado em balanços de massa, energia e carga elétrica, foi utilizado para a compreensão do funcionamento do dispositivo. Assim, verificou-se que uma das possíveis causas da operação estar abaixo da eficiência esperada foi devido à baixa relação estequiométrica entre oxigênio alimentado por difusão do ar e vazão de hidrogênio obtido a partir da reação entre alumínio e água.