Aprimorando a tomada de decisão em saúde com aprendizado de máquina em problemas de classificação em dados desbalanceados

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Deina, Carolina
Orientador(a): Fogliatto, Flavio Sanson
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/289543
Resumo: Essa tese aborda a classificação de dados desbalanceados na área da saúde, propondo um workflow adequado para lidar com essa complexidade por meio de Machine Learning (ML) supervisionado. Composta por três artigos, a pesquisa apresenta estratégias para lidar com o desbalanceamento, além de explorar a generalização e a interpretabilidade dos algoritmos de ML. Os objetivos são: (i) definir um framework para classificação em bancos de dados desbalanceados; (ii) avaliar a capacidade de generalização dos modelos em situações do mundo real; (iii) propor direções futuras para a interpretabilidade dos resultados visando apoiar decisões médicas. Do ponto de vista prático, a aplicação da tese é validada através de dois estudos de caso: o primeiro identificando pacientes com diabetes com maior risco de hospitalização, otimizando o direcionamento de recursos hospitalares e o segundo sobre estimativas de no-show (não comparecimento) em consultas médicas, com o objetivo de melhorar o serviço prestado aos pacientes.