Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Barella, Victor Hugo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06012016-145045/
|
Resumo: |
Os recentes avanços da ciência e tecnologia viabilizaram o crescimento de dados em quantidade e disponibilidade. Junto com essa explosão de informações geradas, surge a necessidade de analisar dados para descobrir conhecimento novo e útil. Desse modo, áreas que visam extrair conhecimento e informações úteis de grandes conjuntos de dados se tornaram grandes oportunidades para o avanço de pesquisas, tal como o Aprendizado de Máquina (AM) e a Mineração de Dados (MD). Porém, existem algumas limitações que podem prejudicar a acurácia de alguns algoritmos tradicionais dessas áreas, por exemplo o desbalanceamento das amostras das classes de um conjunto de dados. Para mitigar tal problema, algumas alternativas têm sido alvos de pesquisas nos últimos anos, tal como o desenvolvimento de técnicas para o balanceamento artificial de dados, a modificação dos algoritmos e propostas de abordagens para dados desbalanceados. Uma área pouco explorada sob a visão do desbalanceamento de dados são os problemas de classificação hierárquica, em que as classes são organizadas em hierarquias, normalmente na forma de árvore ou DAG (Direct Acyclic Graph). O objetivo deste trabalho foi investigar as limitações e maneiras de minimizar os efeitos de dados desbalanceados em problemas de classificação hierárquica. Os experimentos realizados mostram que é necessário levar em consideração as características das classes hierárquicas para a aplicação (ou não) de técnicas para tratar problemas dados desbalanceados em classificação hierárquica. |