Avaliação da habilidade preditiva entre modelos Garch multivariados : uma análise baseada no critério Model Confidence Set

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Borges, Bruna Kasprzak
Orientador(a): Ziegelmann, Flavio Augusto
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/70011
Resumo: Esta dissertação analisa a questão da seleção de modelos GARCH multivariados em termos da perfomance de previsão da matriz de covariância condicional. A aplicação empírica é realizada com 7 retornos de índices de ações envolvendo um conjunto de 34 especificações de modelos para os quais computamos as previsões da variância condicional um passo a frente para uma amostra com 60 observações para cada especificação dos modelos GARCH multivariados. A comparação entre os modelos é baseada no procedimento Model Confidence Set (MCS) avaliado através de duas funções perdas robustas a proxies de volatilidade imperfeitas. O MCS é um procedimento que permite comparar vários modelos simultaneamente em termos de sua habilidade preditiva e determinar um conjunto de modelos estatisticamente semelhantes em termos de previsão, dado um nível de confiança.