Estimação para o modelo compartimental SIRS via filtragem iterada para processos de Markov parcialmente observados utilizando o pacote pomp do R: uma análise dos casos de influenza A

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Jesus, Rafaela Gomes de
Orientador(a): Cybis, Gabriela Bettella
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/237725
Resumo: A gripe é uma doença que se espalha globalmente todos os anos e, até antes da pandemia do coronavírus em 2019, infectava entre 10% a 20% da população mundial, causando aproximadamente 500.000 mortes anuais. Uma forma de acompanhar a progressão da gripe no Brasil é através do número de casos de infecção reportados na plataforma INFOgripe, que faz a vigilância da Síndrome Respiratória Aguda Grave (SRAG) no país. Entretanto, devido à expressiva sub-notificação, esses dados representam apenas um retrato parcial da dinâmica da epidemia. Para estudar a dinâmica do vírus influenza A, a série temporal do número de casos positivos pela infecção deste patógeno foi extraída e tratada como um processo de Markov parcialmente observado. Para modelar a série e fazer a inferência dos parâmetros que determinam a dinâmica da doença, fez-se uso do modelo compartimental SIRS (Suscetível - Infectado - Recuperado - Suscetível) que, ao dividir a população em compartimentos, fornece uma estrutura base para compreender a transmissão do vírus entre os indivíduos. Este trabalho teve como objetivo estimar os parâmetros que governam a intensidade do fluxo de indivíduos entre os compartimentos do modelo SIRS utilizando o método da filtragem iterada, baseada na função de verossimilhança. A partir destas estimativas, valores para o período médio de infecção (µi), o período médio de perda de imunidade (µr) e o número reprodutivo básico (R0) da doença foram avaliados. O parâmetro ρ, que representa a taxa de reporte da doença, também foi estimado e uma parametrização alternativa para o modelo foi proposta com o objetivo de aumentar a eficiência do algoritmo que realiza a estimação. O pacote pomp, implementado no software R, foi utilizado para realizar toda a parte computacional. Os resultados apresentados indicam que a utilização da parametrização alternativa produziu valores de parâmetros que aparentam representar um máximo global para a função de verossimilhança. Dentre os resultados obtidos, observamos que quando a magnitude de ρ está na ordem de 10−4 , o conjunto de parâmetros resultantes são compatíveis com valores de referência na literatura. Este estudo deve ser compreendido como um passo intermediário na modelagem do vírus influenza A. Trabalhos futuros podem considerar o ajuste de modelos mais complexos aos dados, introduzindo, por exemplo, covariáveis para os parâmetros de interesse.