Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Misturini, Ricardo |
Orientador(a): |
Souza, Rafael Rigão |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/24926
|
Resumo: |
Este texto apresenta alguns dos elementos básicos envolvidos em um estudo introdutório das equações diferencias estocásticas. Tais equações modelam problemas a tempo contínuo em que as grandezas de interesse estão sujeitas a certos tipos de perturbações aleatórias. Em nosso estudo, a aleatoriedade nessas equações será representada por um termo que envolve o processo estocástico conhecido como Movimento Browniano. Para um tratamento matematicamente rigoroso dessas equações, faremos uso da Integral Estocástica de Itô. A construção dessa integral é um dos principais objetivos do texto. Depois de desenvolver os conceitos necessários, apresentaremos alguns exemplos e provaremos existência e unicidade de solução para equações diferenciais estocásticas satisfazendo certas hipóteses. |