Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Almeida, Danila Maria Silva Fernandes de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-21082020-090558/
|
Resumo: |
Neste trabalho, apresentamos uma classe de processos de Lévy A de puro salto, com filtração interna e decomposição de Itô-Lévy e estabelecemos formas explícitas para a representação martingale, principal componente do nosso processo. Além disso, propomos uma fórmula de Itô-Meyer ótima para um funcional de Lévy e um esquema de aproximação do tipo Euler-Maruyama para uma EDE path-dependent regida pelo processo de Lévy A. Para isso, primeiramente, aproximamos A por um processo de Poisson composto Aε , que provamos convergir fortemente em B2 para A, quando ε ↓ 0. Esse resultado é fundamental para mostrar que, dado um supermartingale envelope de Snell S, podemos aproximá-lo por meio de uma estrutura discreta de encaixe, que vem a ser a sequência de processos valor, associados a S. |