Superfícies com curvatura média constante não nula

Detalhes bibliográficos
Ano de defesa: 1988
Autor(a) principal: Medeiros, Nubem Airton Cabral
Orientador(a): Sebastiani Artecona, Marcos Antonio Arturo
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/131345
Resumo: Neste trabalho são tratados alguns resultados sobre superfícies com curvatura média constante, imersas na R3, sendo destacadas os teoremas de DELAUNAY (1841), LIEBMANN (1900), H. HOPF (1956), A.D. ALEXANDROV (1957) e J. RIPOLL (1985). Demonstra-se, com algum detalhamento, o leorema de DELAUNA Y para o caso da cônica -que rola, sobre urna reta, sem deslizar, ser uma elipse e não uma hipérbole, como no trabalho original, bem como prova-se 1que para gue a superfície de revolução com curvatura média constante seja completa, tal cônica deve ser, obrigatoriamanente, uma elipse. Utiliza-se, neste último teorema, resultados mais recentes como o de'i'ido a W. HSIANG (1981). São também demonstrados o clássico teorema de ALEXANDROV de caracterização da esfera, como única superfície compacta e conexa que possui curvatura média constante não nula, e o de J. RIPOLL que generaliza o anterior pais substitui a hipótese de compaticidade por outra mais fraca que é a sua completude, embora exija que seja propriamente mergulhada na R 3, bem como sua inclusão num cone plano.