Números p-ádicos transcendentes e séries de racionais que convergem em qualquer complemento de Q

Detalhes bibliográficos
Ano de defesa: 2000
Autor(a) principal: Hoffmann, Gertrudes Regina Todeschini
Orientador(a): Ripoll, Cydara Cavedon
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/117811
Resumo: Quando tomamos o valor absoluto usual e o completamento de Q em relação à métrica induzida por ele, o resultado é o corpo IR dos números reais; fazendo o mesmo processo com qualquer outro valor absoluto definido em Q, obtemos um dos corpos p-ádicos QP. O propósito deste trabalho é explorar a convergência de séries em QP e em IR, construindo algumas séries de números racionais com propriedades de convergência surpreendentes. Provamos também que é possível construir uma série de números racionais que converge em qualquer completamento de Q para um valor pré-fixado de Q e de R.