Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Santos, Gleiciano Cosmo |
Orientador(a): |
Farias, Diego Marcon |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/235625
|
Resumo: |
Nesta dissertação, estudamos os resultados, desenvolvidos por Caffarelli e Silvestre em [5], que caracterizam o operador Laplaciano fracionário em termos de uma extensão que envolve um operador local em forma divergente. Além disso, aplicamos esta caracterização para mostrar, seguindo Caffarelli-Silvestre, uma desigualdade do tipo Harnack para funções s-harmônicas não negativas. Finalmente, mostramos que a Desigualdade de Harnack implica em regularidade de Hölder. |