Ano de defesa: |
2015 |
Autor(a) principal: |
Yamashita, Gabrielli Harumi |
Orientador(a): |
Anzanello, Michel José |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/118834
|
Resumo: |
A averiguação da autenticidade de medicamentos tem se apoiado na análise de perfil por espectroscopia de infravermelho (ATR-FTIR). Contudo, tal análise tipicamente gera dados caracterizados por elevado número de variáveis (comprimentos de onda) ruidosas e correlacionadas, necessitando assim da aplicação de técnicas para seleção das variáveis mais relevantes e informativas, tornando os modelos preditivos e exploratórios mais robustos. Esta dissertação testa sistemáticas para a seleção de variáveis com vistas à clusterização e classificação de medicamentos. Para tanto, inicialmente faz-se uso dos parâmetros oriundos da Análise de Componentes Principais (ACP) para a geração de três índices de importância de variáveis; tais índices guiam um processo iterativo de eliminação de variáveis com vistas a uma clusterização mais consistente, medida através do Silhouette Index. Na sequência, utiliza-se o Algoritmo Genético (AG) combinado com a ferramenta de classificação k nearest neighbor (kNN) para selecionar o subconjunto de variáveis que resultem na maior acurácia média com propósito de classificação das amostras em dois grupos, originais ou falsificados. Por fim, aplica-se a divisão dos dados ATR-FTIR em intervalos para selecionar as regiões espectroscópicas mais relevantes para a classificação das amostras via kNN; na sequência, aplica-se o AG para refinar os intervalos retidos anteriormente. A aplicação dos métodos de seleção de variáveis propostos permitiu realizar clusterizações e classificações mais precisas com base em um subconjunto reduzido de variáveis. |
---|