Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Cervo, Victor Leonardo |
Orientador(a): |
Anzanello, Michel José |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/75915
|
Resumo: |
A presente dissertação propõe novas abordagens para seleção de variáveis com vistas à formação de grupos representativos de observações. Para tanto, sugere um novo índice de importância das variáveis apoiado nos parâmetros oriundos da Análise de Componentes Principais (APC), o qual é integrado a uma sistemática do tipo forward para seleção de variáveis. A qualidade dos agrupamentos formados é medida através do Silhouette Index. Um estudo de simulação é projetado para avaliar a robustez e o desempenho da sistemática proposta em dados com diferentes níveis de correlação, ruído e número de observações a serem clusterizadas. Na sequência, é apresentada uma versão modificada da sistemática original, a qual utiliza funções kernel para remapeamento dos dados com vistas ao incremento da qualidade de clusterização e redução das variáveis retidas para formação dos agrupamentos. A versão modificada é aplicada em 3 bancos de dados da indústria química, aumentando a qualidade da clusterização medida pelo SI médio em 150% e utilizando em torno de 6% das variáveis originais. |