ALGORITMO CO-EVOLUTIVO PARA PARTICIONAMENTO DE DADOS E SELEÇÃO DE VARIÁVEIS EM PROBLEMA DE CALIBRAÇÃO MULTIVARIADA.
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Pontifícia Universidade Católica de Goiás
Engenharia BR PUC Goiás Programa de Pós-Graduação STRICTO SENSU em Engenharia de Produção e Sistemas |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://localhost:8080/tede/handle/tede/2469 |
Resumo: | Esse trabalho apresenta o desenvolvimento de um algoritmo genético co-evolutivo para a seleção de amostras a partir de um conjunto de dados e a seleção de variáveis a partir das amostras selecionadas no contexto da calibração multivariada. Cada amostra é dividida em conjunto de calibração para a confecção do modelo e conjunto de validação do modelo de calibração. O algoritmo seleciona amostras e variáveis com o objetivo de construir modelos de calibração. Os resultados mostram que os conjuntos de dados selecionados pelo algoritmo proposto produzem modelos com melhor capacidade preditiva do que os modelos relatados na literatura. |