Previsão da geração de energia elétrica no médio prazo para o Estado do Rio Grande do Sul empregando redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Rola, Marcelo Coleto
Orientador(a): Bodmann, Bardo Ernst Josef
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/157828
Resumo: A demanda e, consequentemente, a geração de energia elétrica são questões de suma importância para o desenvolvimento econômico e social dos países. Modelos para previsão destes parâmetros no longo e médio prazo são empregados com a finalidade de antever possíveis cenários e propor estratégias para a realização de um planejamento energético adequado. Neste contexto, o presente estudo tem como objetivo realizar a previsão da geração de energia elétrica no estado do Rio Grande do Sul (RS) em um horizonte de médio prazo (um ano), utilizando Redes Neurais Artificiais (RNA’s) do tipo feedforward com algoritmo de aprendizado supervisionado backpropagation. Para o desenvolvimento deste trabalho elaborou-se um script para executar as simulações necessárias, as quais foram realizadas através do software Matlab®. As variáveis de influência selecionadas como entradas do modelo de previsão referem-se à economia (estadual e nacional), ao balanço de energia elétrica e à meteorologia do estado, durante o período de janeiro de 2009 a março de 2016. Para realizar o treinamento da rede neural, adicionou-se a matriz de entrada este conjunto de dados, com frequência mensal, referentes a janeiro de 2009 a março de 2015 e para previsão foram inseridos dados de abril de 2015 a março de 2016. Por fim, depois de realizada a simulação completa da RNA, comparou-se o resultado observado da geração de energia elétrica do estado com o obtido através do modelo de previsão, indicando um erro percentual absoluto médio (MAPE) de 5,86% e um desvio absoluto médio (MAD) de 134,15 MW médio. Os resultados obtidos neste trabalho mostram-se promissores, além de semelhantes aos encontrados na literatura, demonstrando assim confiabilidade e eficácia do método empregado.