Utilização de redes neurais na análise e previsão de séries temporais

Detalhes bibliográficos
Ano de defesa: 1995
Autor(a) principal: Fernandes, Luiz Gustavo Leao
Orientador(a): Navaux, Philippe Olivier Alexandre
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/25774
Resumo: Este trabalho a um estudo a respeito da aplicação de Redes Neurais Artificiais (RNAs), mais especificamente do modelo perceptron multi-camadas com aprendizado por retro-propagação de erros, a previsão de valores futuros de Series Temporais. 0 estudo foi realizado através da realização de previsões a partir de uma determinada arquitetura de rede neural, a qual é construída com base na analise estatística da serie, para três series reais. A primeira representa o Índice mensal de passageiros das linhas aéreas americanas entre janeiro de 1960 e dezembro de 1971, a segunda corresponde ao índice pluviométrico anual da cidade de Fortaleza no estado do Ceara entre 1849 e 1984, e a terceira trata do índice mensal de produção industrial do estado do Rio Grande do Sul entre janeiro de 1981 e julho de 1993. As duas primeiras series são exemplos clássicos utilizados no estudo dos modelos estatísticos aplicados a previsão de Series Temporais. Os resultados obtidos com as RNAs foram comparados aos progn6sticos realizados pelo método economêtrico que apresenta os melhores resultados para o problema da previsão de Series Temporais: o método da decomposição da serie em suas componentes básicas não-observáveis (tendência, sazonalidade, ciclo e irregular). Tais resultados mostraram que as RNAs podem apresentar excelentes níveis de precisão em seus prognósticos, indicando sua adaptação ao problema da previsão de valores futuros de Séries Temporais.