Redes neurais artificiais aplicadas à previsão da incidência de malária no estado de Roraima

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Cunha, Guilherme Bernardino da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
BR
Programa de Pós-graduação em Engenharia Elétrica
Engenharias
UFU
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/14275
Resumo: The present work aims to create a prototype called SISPIMA - forecast system in the incidence of malaria, to generate estimates of the incidence of malaria in Roraima state in three different periods: short term (3 months), medium term (6 months) and long term (12 months). To develop the system, were employed techniques of artificial neural networks and time series analysis. The SISPIMA consists of four steps: collection and storage of data, preprocessing, training and predicting the incidence of malaria. Data were obtained through access to the site SIVEP-Malaria Health Ministry. These were filtered, normalized and classified by SISPIMA in the pre-processing before performing the training and prediction. For training and forecasting, used artificial neural networks. The architecture of artificial neural network used was the multilayer perceptron (MLP) with a variation of the backpropagation training algorithm, called of Resilient Propagation (RPROG). To validate the results and assess the performance and accuracy of the proposed system, we use the ARIMA model as a comparison because of its wide application in epidemiological time series forecasting.